Note

Stereoselective syntheses of acetylated o-tolyl 1-thioglycosides

Yili Ding and Yuting Liu*

Department of Chemistry, Xinjiang University, Wulumuqi, Xinjiang 830046 (China)

(Received December 3rd, 1989; accepted for publication, June 12th, 1990)

Many 1-thioglycosides and their derivatives are biologically active and some can inhibit the growth and metabolism of cancer cells¹. Hence, there has been much interest in the synthesis and properties of these compounds².

There are several methods for the synthesis of 1-thio-\beta-D-glycosides³. Apparu et al.⁴ synthesised 1-thio- α -D-glucopyranosides and 1-thio- α -D-galactopyranosides from the corresponding β -D-glycopyranosyl chlorides in hexamethylphosphoric triamide followed by column chromatography. We now report on the synthesis of the acetylated o-tolyl 1-thio-D-glycosides 1-7 by the condensation of o-toluenethiol with the acetylated α -D-glycosyl bromide or β -D-glycosyl chloride according to the procedure of Purves⁵;

TABLE I

Data on the acetylated o-tolyl 1-thioglycopyranosides 1-7

Compound	Yield (96)	M.p.	$[\alpha]_{\mathrm{D}}^{20}$	Formula	Element	Iemental analysis (%)	(9)	
	(%)	(raalfan)	(negrees)		Calc.		Found	
					C	Н	C	Н
1 (\theta - D - xylo)^a	75	99	-44 (c 1.06)	C ₁₈ H ₂₂ O ₅ S	56.55	5.76	56.40	5.77
2 (a-D-xylo)	36	701	117 (c 1.14)	C _{IR} H ₂₀ O,S	56.55	5.76	56.37	5.73
3 (β-D-lacto)	61.5	97.5	-18 (c 1.17)	$C_{11}H_{42}O_{17}S$	53.37	2.66	52.98	5.62
4 (α-D-lacto)	23	149	129 (c 1.31)	C,H,O,S	53.37	9.66	53.11	5.64
$5 (\theta - D - gluco)^b$	81	102	- 14 (c 1.35)	C21H260,S	55.51	5.73	55.64	5.78
6 (a-D-malto)	89	158	203 (c 0.98)	$C_{11}H_{40}O_{17}S$	53.37	5.66	53.21	5.64
7 (\$-D-galacto)	73	26	-0.2 (c 1.0)	$C_{21}H_{26}O_3S$	55.51	5.73	55.64	5.78

" Ref. 10; m.p. 65–68°, $[\alpha]_D^{20}$ – 44.2° (chloroform). ^b Ref. 6; m.p. 104–106°, $[\alpha]_D^{20}$ – 16.4° (chloroform). ^c Ref. 7; m.p. 98–99°, $[\alpha]_D^{20}$ ~ 0° (chloroform).

308 NOTE

however, the reactions were carried out in chloroform and the products were crystallised directly. The data on 1-7 are shown in Table I.

The β anomers 1, 5, and 7 have been described^{6,7}, but no spectral data were reported.

The ¹³C-n.m.r. data for 1–7 are recorded in Table II. The chemical shifts of the C-1 resonances for the α -D-glycosides accord with those reported by Apparu *et al.*⁴.

For the pairs of anomers 1/2 and 3/4, the chemical shifts of the C-1 β resonances were larger than those of the C-1 α resonances (1.53 and 1.49 p.p.m., respectively). The chemical shifts of the C-1 β resonances of 5 and 7 were similar to those of C-1 β for 1 and 3, and that of C-1 α of 6 was similar to those of C-1 α of 2 and 4, in agreement with data for acetylated aryl glycosides⁸, but the $\Delta\delta$ value for the 1-thio-p-glycopyranosides was smaller, reflecting the deshielding by the sulfur atom.

I.r. data for 1–7 are shown in Table III. Varma *et al.*⁹ noted for acetylated phenyl 1-thio-D-gluco- and -galacto-pyranosides that the α anomers had i.r. bands at 848 cm⁻¹ and the β anomers at 895–900 cm⁻¹. For 1–7, the β anomers had i.r. bands near 823 cm⁻¹, and the α anomers near 775 and 560 cm⁻¹. These bands can be used to distinguish

TABLE II

13C-N.m.r. data^a for 1-7

Atom	1 (β)	2 (α)	3 (<i>β</i>)	4 (α)	5 (<i>β</i>)	6 (a)	7 (\$\beta\$)
C-1	86.81	85.28	86.28	84.79	86.57	84.66	87.27
C-1'			101.02	101.14		95.96	
C-2	70.20	69.86	70.20	70.20	70.47	69.49	67.67
C-2'			69.29	69.37		70.05	
C-3	72.22	71.08	74.01	69.59	74.08	73.71	72.14
C-3'			70.88	70.94		72.44	
C-4	68.64	69.19	76.75	76.72	68.66	74.81	67.44
C-4'			66.83	66.89		71.14	
C-5	65.24	60.19	76.34	71.18	75.65	68.67	74.58
C-5'			71.06	71.18		71.14	
C-6			62.41	62.30	62.43	62.97	61.75
C-6'			61.01	61.03		61.67	

[&]quot;In CDCl₃ (internal Me₄Si).

TABLE III
Selected i.r. bands (cm⁻¹) for 1-7

1(\$\beta\$)	2 (α)	3 (<i>β</i>)	4 (α)	5 (β)	6 (α)	7(<i>β</i>)
823.4		828.9		821.4		823.8
	772.2		775.1		785.2	
	551.1		565.6		563.7	
905.4	902.1	912.9	905.1	908.8	901.9	914.2

NOTE 309

1-thio- α - and - β -D-glycopyranosides. Both the α and β anomers had i.r. bands in the range of 900–910 cm⁻¹, with those of the α anomers at lower frequency (cf. ref. 10).

The e.i.-mass spectra of 1–7 at 70 eV had the base peak at m/z 43 (Ac⁺). However, at 20 eV, the base peak was at m/z 259 for the pentopyranosides 1 and 2 (corresponding to $C_{11}H_{15}O_7^+$), at m/z 169 (for $C_8H_9O_4^+$) for the hexopyranosides 5 and 7, and at m/z 331 (for $C_{14}H_{19}O_9^+$) for the disaccharide derivatives 3, 4, and 6. The fragmentation patterns for the pairs 1/2 and 3/4 were similar. The intensities of the high-mass peaks were larger for the α anomers. At 70 eV, only the α anomers gave peaks for M^+

For the disaccharide derivatives, the configurations at C-1 and C-1' were β , β for 3, α , β for 4, and α , α for 6. In the 70-eV mass spectra, the peaks at m/z 331 (cleavage at C-1') were stronger for 3 and 4 than for 6. Thus, α -cleavage occurs more readily for C-1' β than for C-1' α , in accord with the findings of Kadentsev *et al.*¹¹ for methyl glycosides.

EXPERIMENTAL

General methods. — Melting points were determined with a Mettler FP 5 apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 241 MC polarimeter. Elemental analyses were determined with a Yanaco MT-3 instrument. F.t.-i.r. spectra (KBr discs) were recorded with a Nicolet 170 spectrometer. ¹³C-N.m.r. spectra were recorded with a Varian FT-80 spectrometer for solutions in CDCl₃ (internal Me₄Si). Mass spectra were obtained with a VG 7070 mass spectrometer, using in-beam electron impact. Solvents were evaporated at <35°.

The potassium salt of o-toluenethiol was obtained by dissolving potassium hydroxide in a solution of o-toluenethiol in MeOH. Acetylated α -D-glycopyranosyl bromides and β -D-glycopyranosyl chlorides were obtained as reported¹².

Acetylated o-tolyl 1-thio- α -D-glycopyranosides (2, 4, and 6). — The following method is typical. A methanolic solution of o-toluenethiol potassium salt (0.010 mol) was added dropwise to a solution of acetylated β -D-xylopyranosyl chloride (0.005 mol, 1.5 g) in CHCl₃ (5 mL). The mixture was then stirred for 38 h at room temperature, diluted with CHCl₃ (10 mL), and washed with water. The water layer was extracted twice with CHCl₃, the combined CHCl₃ solutions were dried (Na₂SO₄), and the solvent was evaporated under reduced pressure. Treatment of the residue with MeOH at \sim 5° gave 2 (0.68 g). Data on 2, 4, and 6 are given in Tables I–III.

Acetylated o-tolyl 1-thio- β -D-glycopyranosides (1, 3, 5, and 7). — The following procedure is typical. A methanolic solution of o-toluenethiol potassium salt (0.010 mol) was added dropwise to a solution of acetylated α -D-xylopyranosyl bromide (0.005 mol, 1.7 g) in CHCl₃ (5 mL). The mixture was stirred for 48 h at room temperature, then treated as described above to give 1 (1.4 g). Data on 1, 3, 5, and 7 are given in Tables I–III.

REFERENCES

- 1 S. Kogto, Nippon. Kokai Tokkyo Koho JP, 60/34,913 (85/34,913); Chem. Abstr., 103 (1985) 215716u.
- 2 J. Bogusiak and W. Szeja, Wiad. Chem., 38 (1984) 867-878; Chem. Abstr., 104 (1986) 186730g.
- 3 D. Horton and D. H. Hutson, Adv. Carbohydr. Chem., 18 (1963) 138-140.
- 4 M. Apparu, M. Blanc-Muesser, J. Defaye, and H. Driguez, Can. J. Chem., 59 (1981) 314-320.
- 5 C. B. Purves, J. Am. Chem. Soc., 51 (1929) 3619-3627.
- 6 M. Cerny, D. Zachystalova, and J. Pacak, Collect. Czech. Chem. Commun., 26 (1961) 2206-2211.
- 7 A. L. Clingman and N. K. Richtmyer, J. Org. Chem., 29 (1964) 1782-1787.
- 8 Y. Liu and Y. Ding, J. Xinjiang Univ., 4 (1987) 71-73; 5 (1988) 76-78.
- 9 R. Varma, S. Y. Kulkarni, C. I. Jose, and V. S. Pansare, Carbohydr. Res., 133 (1984) 25-32.
- 10 Y. Ding and Y. Liu, Guangpuxue Yu Guangpu Fenxi, 8 (1988) 11-13; Chem. Abstr., 111 (1989) 154721n.
- 11 V. I. Kadentsev, A. G. Kaimaragov, and O. S. Chizhov, Izv. Akad. Nauk SSSR, Ser. Khim., 2 (1980) 330-334.
- 12 R. U. Lemieux, Methods Carbohydr. Chem., 2 (1963) 221-225.